Fitnes-tomsk.ru

Красота и Здоровье
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды мышечной ткани таблица

Мышечная ткань: виды, особенности строения и функции

Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные — десмальный зачаток;
  • эпидермальные — кожная эктодерма;
  • нейральные — нервная пластинка;
  • целомические — спланхнотомы;
  • соматические — миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани

Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая — перемещение в пространстве;
  • статическая — поддержание определенной позиции частей тела;
  • рецепторная — проприорецепторы, воспринимающие раздражение;
  • депонирующая — жидкость, минералы, кислород, питательные вещества;
  • терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
  • мимика — для передачи эмоций.

Строение и функции сердечной мышечной ткани

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид тканиХарактеристика
ГладкомышечнаяВходит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
СкелетнаяСтруктурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

Мышечная ткань. Строение, функции, классификация

Мышечная ткань образует активную часть опорно-двигательного аппарата – скелетные мышцы и мышечные оболочки внутренних органов. Её главной особенностью является способность сокращаться и возвращаться в исходное положение под влиянием нервных импульсов. Именно так осуществляются процессы дыхания, движения крови по сосудам, различные перемещения тела в пространстве. Мышечная ткань развивается из мезодермы еще на стадии эмбрионального развития. Выделяют 3 различных вида этой ткани, каждый из которых следует рассмотреть детально. Это поперечнополосатая, гладкая и сердечная поперечнополосатая мышечная ткань.

Поперечнополосатая мышечная ткань

Эта ткань характерна для наших скелетных мышц, отвечающих за движение тела, мимику и т.д. Выглядит как длинные волокна чаще всего закрепленные концами с сухожилиями. Когда волокно сокращается, сухожилие натягивается, что приводит к некому движению, например сгибанию пальца. Длина мышечного волокна в разных участках тела сильно различается от нескольких миллиметров до 12,5 см. Диаметр составляет от 10 до 70 мкм. Снаружи отдельные мышцы и группы мышц покрыты соединительно тканым «чехлом» – фасцией.

Клеточное строение

В поперечнополосатой мышечной ткани клеток в привычном понимании этого слова нет. Здесь клетки сливаются в единое целое, образуя многоядерное волокно, с общими органоидами – так называемый симпласт. Внутренняя среда симпласта – саркоплазма, содержит включения жира и гликогена, что совершенно необходимо для окислительных процессов, происходящих в мышцах.

Сократительный аппарат

Главным элементом сократительного аппарата являются миофибриллы – многочисленные белковые полоски, протянутые вдоль симпласта. Их диаметр составляет примерно 1 мкм. Миофибриллы как раз и придают мышечной ткани полосатость и состоят из нитей, называемых миофиламентами – удлиненных молекул сократительных белков: актина и миозина.

Миофибрилла состоит из участков (полос) обладающих различными химическими и физическими свойствами. Эти участки принято называть дисками. I-диски преломляют луч света только один раз, это свойство называется изотропностью. Они светлого цвета и состоят из белков актина. А-диски являются анизотропными, т.к. преломляют луч дважды. Они заметно темнее и состоят из актина и миозина. Структура миофибриллы состоит из повторяющих участков с актином и миозином. Каждый такой участок, является сократительной единицей и назывется саркомером. При получении нервного импульса происходит сокращение саркомеров, а вместе с ними и миофибриллы. Важную роль в мышечном сокращении играют ионы кальция.

Иннервация

Двигательные нервные клетки (мотонейроны), имеют длинный отросток (аксон), который подходит к мышце. У поверхности мышечного волокна аксон заканчивается, разделяясь на несколько коротких отростков, которые проникают в мышечные углубления. Так формируется нервное окончание. Мышечная ткань в области «подключения» нерва именуется двигательной концевой пластинкой.

Соединение двигательной концевой пластинки и окончания аксона называется нервно-мышечным синапсом. Мотонейрон и все мышечные волокна, которые он контролирует, посредством аксона образуют двигательную (нейромоторную) единицу – функциональную единицу скелетной мускулатуры.

Типы волокон скелетных мышц

Большинство мышц человеческого тела включает в состав волокна различных типов, обычно с преобладанием какого-то одного вида, лучше выполняющего функции данной мышцы. Давайте рассмотрим эти типы:

  • Медленные физические волокна окислительного типа – отличаются высоким содержанием белка миоглобина, способного связывать кислород. По своим свойствам миоглобин схож с гемоглобином. Мышцы с преобладанием этих волокон называют красными из-за их темно-красного цвета. Они выполняют функцию поддержания позы. Утомление происходит чрезвычайно медленно, а период полного восстановления очень короткий. Это достигается за счет миоглобина и большого числа митохондрий. Нейромоторные единицы красных мышц содержат большое количество мышечных волокон.
  • Быстрые физические волокна окислительного типа способны производить быстрые сокращения без заметного утомления. Содержат большое количество митохондрий и способны образовывать АТФ методом окислительного фосфолирования. Нейромоторная единица содержат меньшее число волокон, чем в красных мышцах.
  • Быстрые физические волокна с гликолитическим типом окисления – отличаются тем, что получают АТФ методом гликолиза. Из-за отсутствия миоглобина имеют белый цвет. Способны к сильным, быстрым сокращениям, но сравнительно быстро утомляются.
  • Тонические волокна принципиально отличаются от остальных групп имеющих одну, максимум несколько концевых пластинок. Тонические волокна имеют очень много синаптических контактов с аксоном, вследствие чего напряжение и расслабление мышцы происходит постепенно. Тонические волокна входят в состав наружных мышц глаза.

Функции и свойства скелетных мышц

Функции удобно представить в виде следующего списка:

  • обеспечение и поддержание позы;
  • перемещение тела в пространстве;
  • перемещение одной части тела относительно другой;
  • терморегуляция (выделение тепла).

Свойства скелетных мышц:

  • возбудимость – способность реагировать на действия раздражителя с последующим изменением мембранного потенциала и ионной проводимости (например, для ионов кальция). Пресипнатическое окончание аксона выделяет стимулирующее вещество – медиатор ацетилхолин, который и исполняет роль раздражителя;
  • проводимость – способность распространять возбуждение (потенциал действия) вдоль и вглубь мышечного волокна;
  • сократимость – способность укорачиваться или увеличивать напряжение во время возбуждения;
  • эластичность – увеличения напряжения при растягивании;
  • тонус – скелетные мышцы постоянно находятся в состоянии некоторого сокращения. При неврологических заболеваниях тонус может быть повышен либо понижен относительно нормы.

Гладкая мышечная ткань

Данный вид ткани находится в стенках внутренних органов, в лимфатических и кровеносных сосудах. Сокращения этой ткани в отличие от поперечнополосатой не подчиняется нашей воли. Поэтому ее еще называют непроизвольной мышечной тканью. Сокращается медленно, приблизительно за 60-80 секунд. Визуально отличается от других разновидностей мышечной ткани отсутствием поперечной исчерченности. Выделяют 2 подвида:

  • висцеральные (унитарные) гладкие мышцы – почти вся гладкая мускулатура образована этим подвидом, за исключением ресничной мышцы и мышцы радужки глаза.
  • мультиунитарные гладкие мышцы образуют ресничную мышцу и мышцы радужки глаза. Мультиунитарные отличаются от висцеральных большим количеством точек иннервации, что позволяет им работать с высокой скоростью. Это они отвечают за изменения диаметра зрачка под влиянием света.

Клеточное строение

Гладкая мышечная ткань состоит из отдельных клеток – миоцитов, имеющих веретенообразную форму. Длина миоцитов составляет 20-500 мкм, толщина 5-8 мкм. Ядро имеет эллипсовидную форму. Мембраны прилегающих к друг другу клеток образуют соединения – нексусы. Нексусы передают нервное возбуждение от одной клетки к другой. Миоциты содержат нити актина и миозина, но здесь они расположены менее упорядоченно, чем в поперечнополосатой мышечной ткани.

Иннервация

Гладкая мышечная ткань имеет двойную иннервацию: симпатическую (адренергическую) и парасимпатическую (холинэргическую). В зависимости от органа одна из них способствует возбуждению, а другая наоборот расслаблению гладкой мускулатуры. Например, мышечный тонус кишечника повышается под влиянием парасимпатической системы и уменьшается под влиянием симпатической. В тоже время адренергические нервы повышает тонус сосудистой стенки, а парасимпатическое влияние способствует снижению этого тонуса.

В гладкой мышечной ткани отсутствуют концевые пластинки и отдельно взятые нервные окончания. Холинергические и адренергические нервные волокна содержат утолщения – варикозы, которые расположены по всей длине мышцы. Эти варикозы содержат гранулы с химическими активными веществами – медиаторами. Для парасимпатической нервной системы медиатором служит ацетилхолин, а в симпатической системе его роль исполняет норадреналин. Миоциты не контактирующие с варикозами напрямую, активируются через нексусы.

Сердечная поперечнополосатая ткань

Данная ткань образует сердечную мышцу. По своей структуре частично совмещает в себе свойства гладкой и поперечнополосатой мышечной ткани. Клеточное строение представлено кардиомицитами. Сократительные кардиомиоциты отличаются цилиндрической формой и имеют длину 100-150 мкм. Их концы соединяются, образуя функциональные волокна толщиной 10-20 мкм. Также в сердечной ткани присутствуют проводящие кардиомиоциты. Они принимают сигналы от синусно-предсердного узла (главный узел проводящей системы сердца) и передают его сократительным кардиомиоцитам.

Мышечные ткани

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости.) Важнейшие функции мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, скелетная и поперечно-полосатая мышечные ткани.

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов — коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру, мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов — миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно. К примеру, невозможно по желанию сузить или расширить зрачок.

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер — миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Характерная черта данной ткани — поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы — саркомер.

Саркомер

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер — элементарная сократительная единица мышцы. Состоит из тонкого белка — актина, и толстого — миозина. Сокращение осуществляется благодаря трению нитей актина о нити миозина, в результате чего саркомер укорачивается.

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение — посмертное затвердевание мышц — связано именно с ионами кальция, которые устремляются в область низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах, в связи с чем наблюдается стойкая мышечная контрактура: конечности очень сложно разогнуть или согнуть.

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие от гладких миоцитов. Скелетные мышцы быстро утомляются и сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления растянуты во времени.)

Скелетные мышцы поддаются нашему осознанному контролю, их скоращение регулируется произвольно. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Сердечная мышечная ткань

Мышечная ткань сердца — миокард (от др.-греч. μῦς «мышца» + καρδία — «сердце») — средний слой сердца, составляющий основную часть его массы.

Этот тип мышечной ткани удивительным образом сочетает характеристики двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством — автоматизмом — способностью возбуждаться и сокращаться без влияний извне, самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения сердца в нем будут продолжаться еще несколько часов.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- «чрез, слишком» + τροφή — «еда, пища») — в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.

В условиях гиподинамии (от греч. ὑπό — «под» и δύνᾰμις — «сила»), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца — состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка — мезодермы.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Ткани: анатомия, особенности строения и выполняемые функции

В организме человека присутствует более двух сотен различных видов клеток, каждая из которых уникальна. Разделить их на группы, именуемые тканями, позволяет схожее строение и происхождение, а также выполняемые функции. Ткани — это следующая после клеток иерархическая ступень анатомии человека. Они представляют собой симбиоз клеток и межклеточного пространства, структура которых позволяет выполнять возложенные на них функции, поддерживая тем самым нормальную жизнедеятельность организма.

У человека выделяют 4 вида тканей: эпителиальную, соединительную, мышечную и нервную. Каждая из них образуется в результате дифференцировки клеток в процессе формирования организма. В чём заключаются особенности анатомии тканей, как они взаимодействуют и какие функции выполняют? Анатомическая справка поможет разобраться в этих вопросах!

Анатомия ткани человека: от однородных клеток к высокодифференцированному организму

Образование тканей, поддержание их формы и выполнение общих функций — сложный процесс, запрограммированный в организме молекулами ДНК. Именно благодаря генетической информации клетки способны к дифференцировке — биохимическому процессу, в результате которого изначально однородные единицы приобретают специфические особенности, позволяющие им впоследствии выполнять определённые функции. Благодаря этому процессу в организме появляются 4 вида тканей со схожей анатомией и физиологией.

Примечательно, что после дифференцировки клетки тканей сохраняют присущие им особенности даже в новой среде. Чтобы это доказать, в 1952 году специалисты Чикагского университета провели наглядное исследование, разделив клетки куриного эмбриона и культивировав их в специальных ферментах. В результате этого опыта образовались новые колонии, но при этом реакции и «поведение» клеток в новой структурной среде были типичными для конкретного вида ткани, из которой они изначально произошли.

Чтобы понять, как взаимодействуют клетки в человеческом организме, рассмотрим анатомию тканей более подробно.

Эпителий

Эпителиальная ткань образует наружные покровы организма — кожу и слизистые оболочки, выстилает внутренние полости органов и участвует в формировании желёз. Эпителиальные клетки плотно прилегают друг к другу, сплетаясь в единую прочную структуру. Между ними практически не присутствует межклеточное вещество. Такое строение позволяет эпителию справляться с возложенными на него функциями, среди которых:

  • защита внутренней среды организма от разрушительных факторов, действующих извне;
  • разграничение органов и их полостей, поддержание их формы и структуры;
  • выработка специальных жидкостей организма: слюны, некоторых ферментов и гормонов;
  • участие в обменных процессах, в том числе всасывание определённых молекул из окружающей среды и выделение продуктов распада.

Благодаря особой структуре эпителиальные ткани способны к быстрой регенерации. Даже при серьёзном повреждении они постепенно восстанавливаются, образуя колонии новых клеток в травмированных местах.

Особенности анатомии эпителиальной ткани позволяют разделить её на два подвида:

  1. Железистый эпителий образует железы внешней и внутренней секреции. Ткани этого типа присутствуют в щитовидной, слёзных, слюнных железах. Благодаря им осуществляется секреция определённых гормонов и ферментов, поддерживающих баланс внутри организма.
  2. Поверхностный эпителий — это наружные покровы организма, а также выстилка полостей внутренних органов. В зависимости от анатомических особенностей, он может быть однослойным и многослойным, ороговевающим и неороговевающим. Эпителий, способный к ороговению, присутствует только на поверхности кожи и называется эпидермальным слоем. Неороговевающий, в свою очередь, выступает слизистым барьером.

Кроме того, эпителий классифицируется по типу клеток, присутствующих в его составе. Исходя из этого критерия, выделяют кубический, плоский, ресничный, цилиндрический и другие подтипы.

Соединительная ткань

Название этого типа тканей отражает её суть и функциональные особенности. Соединительная ткань включает разнообразные клеточные структуры и большое количество межклеточного вещества, состоящего из аморфной массы, коллагеновых, белковых и эластиновых волокон. Такое строение позволяет ей заполнять все имеющиеся промежутки между функциональными единицами организма — органами и другими тканями. Также она может выполнять питательную, защитную, опорную, пластическую, транспортную и другие функции в зависимости от расположения.

Соединительной тканью представлено более 50 % от общей массы человека. В зависимости от анатомического расположения её классифицируют на следующие виды:

  • собственно соединительные ткани: плотная и рыхлая, ретикулярная и жировая;
  • скелетные образования;
  • трофические жидкости внутренней среды.

Плотная волокнистая ткань содержит высокий процент коллагена и эластина, благодаря чему способна сохранять текущую форму. Из неё образуются сухожилия, связки, фасции мышечных волокон и надкостница (поверхностный слой костей). Рыхлая ткань, напротив, включает высокий процент аморфного вещества, поэтому способна заполнять собой любое необходимое пространство. Совместно с плотной тканью она формирует дерму кожи и оболочку кровеносных сосудов.

Ретикулярная ткань похожа на своеобразную сеть из отростчатых клеток и волокон. Она занимает ключевое место в процессах кроветворения и совместно с плотной и рыхлой соединительной тканью образует печень, красный костный мозг, селезёнку и лимфатические узлы.

Жировая ткань также относится к соединительной. Адипоциты — жировые клетки — выстилают внутренние органы, обеспечивая дополнительную амортизацию между ними. Кроме того, жировая ткань присутствует в подкожной клетчатке и выполняет депонирующую функцию, сохраняя жиры для последующего расщепления в условиях дефицита энергетических ресурсов.

Скелетные образования, представленные соединительной тканью, образуют костные и хрящевые структуры. Костная ткань более плотная, поскольку её межклеточное вещество содержит до 70 % минеральных солей. Благодаря этому кости скелета отличаются высокой прочностью и устойчивостью. Хрящевая ткань более гибкая, поскольку в её составе превалируют эластиновые и коллагеновые волокна. Из неё образуются суставные поверхности, кольца, поддерживающие форму дыхательных путей, ушная раковина и другие хрящи человеческого организма.

Мышечная ткань

К группе мышц относятся волокна, способные реагировать на возбуждение, сокращаться и расслабляться в зависимости от обстоятельств. Каждая отдельная группа мышц имеет определённую, чаще вытянутую, форму и отделена от других специальной сумкой — фасцией. Благодаря их ритмичному последовательному сокращению тело человека способно принимать любую допустимую позу и передвигаться в пространстве. Кроме того, мышечная ткань обеспечивает сокращение стенок некоторых внутренних органов, включая сердце, тем самым поддерживая выполнение многих жизненно важных функций.

Как и другие виды тканей, мышечная имеет свою классификацию:

  • Гладкие мышцы — миоциты — сокращаются непроизвольно и ритмично. Они составляют основу полых внутренних органов и сосудов — артерий, пищевода, мочевого пузыря и т. д.
  • Поперечнополосатая мускулатура образует скелетные и мимические мышцы, диафрагму, гортань, язык и мышцы рта. Отдельной её разновидностью служит сердечная мышечная ткань: хотя она и относится к поперечнополосатой, каждая отдельная клетка миокарда имеет 1–2 ядра в отличие от типичных многоядерных клеток других мышц этой подгруппы.

Нервная ткань

Нервные волокна являются связующим звеном между различными частями организма и окружающей средой, благодаря чему вся анатомическая система работает слаженно и синхронно. Они способны реагировать на возбуждение и проводить нервные импульсы за считанные доли секунд, обеспечивая молниеносную реакцию человека на изменения, происходящие внутри него или действующие извне.

Отдельные клетки нервной системы (нейроны) сплетаются в единую сеть, распространяющуюся на весь организм, посредством отростков двух типов — дендритов и аксонов. Дендриты принимают нервный импульс и передают его к телу нейрона, а аксоны, наоборот, испускают его другим клеткам. Этот процесс происходит мгновенно, благодаря чему возникший импульс быстро достигает конечной цели.

В зависимости от влияния, которое оказывают нейроны на конечную цель, они делятся на несколько видов:

  • возбуждающие клетки выделяют медиатор, провоцирующий возбуждение;
  • тормозящие нейроны синтезируют медиатор торможения;
  • нейросекреторные способны выделять в кровяное русло гормоны.

Небольшие щелевидные промежутки между нейронами заполняет нейроглия — межклеточное вещество нервной ткани. Она выполняет питательную, защитную и изоляционную функцию по отношению к структурным единицам ткани.

Так ли важна анатомия ткани?

Несмотря на кажущееся однообразие, ткани человеческого организма имеют свои особенности, формирующиеся ещё в процессе эмбриогенеза. От того, насколько полноценно каждая из них будет выполнять возложенные функции, зависит результат их сбалансированного взаимодействия — полноценная жизнедеятельность организма. Более подробное изучение анатомии тканей позволяет понять, как органы и системы взаимодействуют друг с другом, на чём базируется их работоспособность и как добиться самого важного момента — поддержания их здоровья и функциональности.

Читать еще:  Продукты с низким содержанием жира таблица
Ссылка на основную публикацию
Adblock
detector